68 research outputs found

    Behavior of the diffractive cross section in hadron-nucleus collisions

    Get PDF
    A phenomenological analysis of diffractive dissociation of nuclei in proton-nucleus and meson-nucleus collisions is presented. The theoretical approach employed here is able to take into account at once data of the HELIOS and EHS/NA22 collaborations that exhibit quite different atomic mass dependences. Possible extensions of this approach to hard diffraction in nuclear processes are also discussed.Comment: 5 pages, 2 figure

    Regge Analysis of Diffractive and Leading Baryon Structure Functions from DIS

    Full text link
    In this paper we present a combined analysis of the H1 data on leading baryon and diffractive structure functions from DIS, which are handled as two components of the same semi-inclusive process. The available structure function data are analyzed in a series of fits in which three main exchanges are taking into account: pomeron, reggeon and pion. For each of these contributions, Regge factorization of the correspondent structure function is assumed. By this procedure, we extract information about the interface between the diffractive, pomeron-dominated, region and the leading proton spectrum, which is mostly ruled by secondary exchanges. One of the main results is that the relative reggeon contribution to the semi-inclusive structure function is much smaller than the one obtained from a analysis of the diffractive structure function alone.Comment: ps file, 22 pages, 5 figures. Totally revised version with major changes, to appear in Physical Review

    Diffractive production of dijets by double Pomeron exchange processes

    Full text link
    A phenomenological description of diffractive dijet hadroproduction via double Pomeron exchange is presented. This description is based on a modified version of the Ingelman-Schlein model which includes the evolution of the Pomeron structure function and corrections regarding rapidity gap suppression effects. The same quark-dominant Pomeron structure function employed in a previous report to describe diffractive dijet and W production via single Pomeron processes is shown here to yield results consistent with the available data for double Pomeron processes as well.Comment: 4 pages, REVTEX4.

    What do experimental data "say" about growth of hadronic total cross-section?

    Get PDF
    We reanalyse pˉp\bar p p and pppp high energy data of the elastic scattering above s=5\sqrt{s}=5 GeV on the total cross-section σtot\sigma_{tot} and on the forward ρ\rho-ratio for various models of Pomeron, utilizing two methods. The first one is based on analytic amplitudes, the other one relies on assumptions for σtot\sigma_{tot} and on dispersion relation for ρ\rho. We argue that it is not possible, from fitting only existing data for forward scattering, to select a definite asymptotic growth with the energy of σtot\sigma_{tot}. We find equivalent fits to the data together with a logarithmic Pomeron giving a behavior σtotlnγs\sigma_{tot} \propto \ln ^\gamma s, γ[0.5,2.20]\gamma\in [0.5,2.20] and with a supercritical Pomeron giving a behavior σtotsϵ\sigma_{tot} \propto s^\epsilon , ϵ[0.01,0.10]\epsilon\in [0.01,0.10].Comment: LaTeX, 18 pages, 5 eps figures included, to be published in Il Nuovo Ciment

    Naa And Naag Variation In Neuronal Activation During Visual Stimulation.

    Get PDF
    N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-L-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.451031-

    Charged Particle Multiplicity in Diffractive Deep Inelastic Scattering

    Get PDF
    The recent data from H1 Collaboration on hadron multiplicity in diffractive DIS has been studied in the framework of perturbative QCD as a function of invariant diffractive mass. The formulas obtained explain the observed excess of particle production in diffractive DIS relative to that in DIS and e+ee^+e^- annihilation. It is shown that the results are sensitive to the quark--gluon structure of the Pomeron. Namely, the data say in favour of a super-hard gluon distribution at the initial scale.Comment: 12 pages, 3 figures; to be published in Phys. Rev.

    Leading particle effect, inelasticity and the connection between average multiplicities in {\bf e+ee^+e^-} and {\bf pppp} processes

    Full text link
    The Regge-Mueller formalism is used to describe the inclusive spectrum of the proton in ppp p collisions. From such a description the energy dependences of both average inelasticity and leading proton multiplicity are calculated. These quantities are then used to establish the connection between the average charged particle multiplicities measured in {\bf e+ee^+e^-} and {\bf pp/pˉppp/{\bar p}p} processes. The description obtained for the leading proton cross section implies that Feynman scaling is strongly violated only at the extreme values of xFx_F, that is at the central region (xF0x_F \approx 0) and at the diffraction region (xF1x_F \approx 1), while it is approximately observed in the intermediate region of the spectrum.Comment: 20 pages, 10 figures, to be published in Physical Review
    corecore